All creative work builds on what came before. Nothing is completely original

"There is nothing new under the Sun" (Biblie)

Dwunastościan rombowy powstaje poprzez podział sześcianu na sześć ostrosłupów (ich wierzchołki leżą w środku sześcianu), a potem "wywrócenie ich na lewą stronę". W ten sposób powstaje bryła o dwunastu przystających ścianach będących rombami i 14 wierzchołkach, z których 8 na stopień 3 (są to wierzchołki początkowego sześcianu) a 6 ma stopień 4 (są to wierzchołki ostrosłupów). Dwunastościan rombowy ma 24 krawędzie.

If you divide a cube into six pyramids (the face of a cube is the base of a pyramid, the center of a cube is the vertex of a pyramid) then flip every pyramid outside the cube, you obtain a rhombic dodecahedron. It's a solid with 12 congruent faces and 14 vertices. Every face is a rhomb. There are 8 vertices adjacet to 3 edges (the vertices of the initial cube) and 6 vertices adjacent to 4 edges (the vertices of the pyramids). The rhombic dodecahedron has 24 edges.

Model dwunastościanu rombowego został zaprojektowany przez Nicka Robinsona. Diagram modułu można znaleźć na stronie Nicka.
Moduł i cały model został także opisany w książce: David Mitchell, Mathematical Origami. Geometrical shapes by paper folding. Tarquin Publications, Norfolk, 1997, ISBN 1-899618-18-X.
Poniżej rodzina dwunastościanów rombowych.

Nick Robinson created modular origami model of the rhombic dodecahedron. Diagram of the module is avaliable on his page. This model is described in the book: David Mitchell, Mathematical Origami. Geometrical shapes by paper folding. Tarquin Publications, Norfolk, 1997, ISBN 1-899618-18-X.
On the following photo you can see a family (or kindergarten)of the rhombic dodecahedrons.

Dwunastościany rombowe wypełniają przestrzeń. Jednak aby to wypełnienie nie rozsypywało się po stole, należy umieścić je na podstawce. Zaprojektowałam i zrobiłam dwa rodzaje podstawek używając tego samego modułu, z którego zrobiony jest dwunastościan.

Rhombic dodecahedron fills the space. It's a three-dimensional analogy of a tesselation. To prevent dodecahedrons against spilling on the table put them on the holder. I have created two holders using rhombic doecahedron module.

Tak wyglądają podstawki / Here you can see both holders:

    


A tak ułożone na nich wypełnienia / And fillings of the space:

    
    
     

Oczywiście są to te same wypełnienia, widziane tylko z różnych kierunków.
Of course it's the same filing (tesselation) of the space. The only difference is the angle of the view.

© Copyright K. i W. Burczyk, 1998

Twirls 2016

Twirls 2012

Twirls 2008

Twirls 2015

Twirls 2011

Twirls 2007

Twirls 2014

Twirls 2010

Twirls 2013

Twirls 2009